A primer on applying AI synergistically with domain expertise to oncology

By April 27, 2021Publications



The concurrent growth of large-scale oncology data alongside the computational methods with which to analyze and model it has created a promising environment for revolutionizing cancer diagnosis, treatment, prevention, and drug discovery. Computational methods applied to large datasets have accelerated the drug discovery process by reducing bottlenecks and widening the search space beyond what is experimentally tractable. As the research community gains understanding of the myriad genetic underpinnings of cancer via sequencing, imaging, screens, and more that are ingested, transformed, and modeled by top open-source machine learning and artificial intelligence tools readily available, the next big drug candidate might seem merely an “Enter” key away. Of course, the reality is more convoluted, but still promising.